RADIANT SYSTEM RADIOMETRY (PHYSICAL MEASUREMENTS)

RADIATION INTENSITY I

watt per steradian (W/sr) = 10⁷ erg / second steradian

RADIATION FLUX (RADIANT POWER) Φ_{e}

watt (W)

= 1 joule per second (J/s)

1 light watt

0.00149 light watt =

RADIANT ENERGY (WORK) Q joule (J) =

- = 1 watt second (w s) = 2.78 x 10⁻⁷ kilowatt hour = 9.48 x 10⁻⁴ BTU
- =

RADIANCE L_e

- watt per steradian meter² (W/ sr m²) = 1 kilogram / second³ sr
 - = 10³ erg/second sr cm²

RADIANCE FLUX DENSITY (IRRADIANCE) $\rm ~E_{e}$

watt per meter² (W/m²) = 1 kilogram / second ³ (kg/s³) = 1 ioule/meter² second

 $= 0.317 \text{ BTU/ feet}^2 \text{ hour}$

Designed and produced for Ancal, Inc.

LUMINOUS SYSTEM PHOTOMETRY (PHYSIOLOGICAL MEASUREMENTS)

LUMINOUS INTENSITY I : the fundamental luminous intencandela (cd) sity unit of the International System (SI). Note: The international "candle" (obsolete) is equal to 1.02 candela LUMINOUS FLUX (LUMINOUS POWER) Φ lumen (Im) = 1 candela steradian (cd sr) = 0.0795 spherical candela 673 lumens at 554 nm 1 lumen at 546 nm LUMINOUS ENERGY (QUANTITY OF LIGHT) Q lumen second (Im s) = 1 candela steradian second = 2.78 x 10⁻⁴ lumen hour = 1 Talbot LUMINANCE (BRIGHTNESS) L stilb =1 candela per centimeter² $= 10^4$ nit (nt) = 3.14 lambert (La) ILLUMINANCE (ILLUMINATION) E lux (lx) = 1 candela steradian per meter² = 1 lumen per meter² (lm / m²) = 0.0929 foot candle

= 0.1 milliphot (mph)